Gabe, E. J. (1962). Acta Cryst. 15, 758-764.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
IUPAC (1979). Nomenclature of Organic Chemistry. Oxford, New York: Pergamon.
Karlsson, B., Pilotti, A. M. \& Wiehager, A. C. (1973). Acta Cryst. B29, 1710-1714.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Spek, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Yates, P. \& Field, G. F. (1960). J. Am. Chem. Soc. 82, 5764-5765.

Acta Cryst. (1985). C41, 105-107

Structure of Arcaine Sulphate, $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{6}^{2+} . \mathrm{SO}_{4}^{2-}$

By V. G. Thailambal and Vasantha Pattabhi*
Department of Crystallography and Biophysics, University of Madras, Madras-600025, India

and F. L. Lee, Y. Le Page and E. J. Gabe \dagger
Division of Chemistry, National Research Council, Ottawa, Canada K1A 0R6

(Received 21 September 1983; accepted 17 September 1984)

Abstract. $\quad M_{r}=270 \cdot 3$, monoclinic, $P 2_{1} / n, \quad a=$ 7.263 (2), $\quad b=35.140$ (9),$\quad c=15.424$ (4) $\AA, \quad \beta=$ $101.70(3)^{\circ}, \quad V=3854.8 \AA^{3}, \quad Z=12, \quad D_{x}=$ $1.397 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=$ $2.29 \mathrm{~mm}^{-1}, \quad T=296 \mathrm{~K}, \quad F(000)=1728$, final $R(F)$ $=0.104$ for 2649 reflections. There are three amine sulphate moleculcs per asymmetric unit leading to interesting amine-sulphate interactions through an extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$-type hydrogen-bond network. The molecules are in the all-trans configuration, except for one of the two guanidyl groups in each molecule.

Introduction. Polyamines are low-molecular-weight aliphatic, nitrogenous bases. Polyamines produced from amino acids by bacteria have pharmacological activities in animals. Studies on polyamines have thrown light on the mode of binding of polyamines to DNA (Pattabhi \& Chandrasekhar, 1983; Liquori et al., 1967; Woo, Seeman \& Rich, 1979; Tsuboi, 1964).

In view of their importance in biological processes, the crystal structure analysis of arcaine sulphate was undertaken as part of the project on studies of polyamines and their interactions.

Experimental. Crystal $0.3 \times 0.2 \times 0.2 \mathrm{~mm}, \theta / 2 \theta$ scan with line profile analysis (Grant \& Gabe, 1978); Picker four-circle automatic diffractometer, graphite-monochromatized $\mathrm{Cu} K \alpha ; 5720$ independent reflections with $\theta<60^{\circ}$ giving the range of h, k and l as -8 to 7,0 to 39 and 0 to 17 respectively; 2649 with $I_{\text {net }}>2 \sigma\left(I_{\text {net }}\right)$; three standard reflections measured after every

* DCB contribution No. 645.
\dagger NRC contribution No. 23727.

100 regular reflections, no significant fluctuations observed; data corrected for direct-beam polarization (Le Page, Gabe \& Calvert, 1979) and Lorentz effects; no absorption correction; unit-cell parameters determined from least-squares refinement of angle values for 42 reflections with $30<\theta<40^{\circ}$; structure solution by MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); anisotropic full-matrix refinement using $F_{o} ; 45$ out of 54 H atoms (from ΔF synthesis and geometry) included only in structure factor calculations; final $R(F)=0 \cdot 104, R_{w}(F)=0.062$; $w=1 / \sigma^{2}\left(F_{o}\right)$ based on counting statistics; goodness of fit $=3.86 ; R($ all $)=0.204, R_{w}($ all $)=0.064$; final difference map had no peaks $>0.58 \mathrm{e}^{\AA^{-3}}$; $(\Delta / \sigma)_{\text {max }}$ $=1 \cdot 0,(\Delta / \sigma)_{\text {mean }}=0 \cdot 2$. Repeated attempts at crystallization under various conditions failed and the determination was carried out with the available crystals, though the poor quality of these crystals restricted the accuracy of the structure. Atomic scattering factors from International Tables for X-ray Crystallography (1974). All calculations performed using the NRC-PDP-8e system of programs (Larson \& Gabe, 1978) adapted for the VAX computer.

Discussion. Atomic positions and equivalent isotropic temperature factors for non-hydrogen atoms are listed in Table $1 . \ddagger$ A stereoview of the molecule is shown in Fig. 1. Interatomic distances and angles are given in
\ddagger Lists of structure factors, anisotropic thermal parameters and torsion angles and details of the hydrogen-bond geometry have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39723 (47 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.
(C) 1985 International Union of Crystallography

Table 2. The coordination of the sulphate ions is tetrahedral. It has been observed in earlier studies that the amine molecules exist in both trans and gauche conformations, though the all-trans conformation is more prevalent. The conformational preference seems to be controlled by the packing forces. The atoms $\mathrm{N}(16)$ through $\mathrm{N}(24)$ of molecule (I), $\mathrm{N}(29)$ through $\mathrm{N}(36)$ of molecule (II) and $\mathrm{N}(41)$ through $\mathrm{N}(48)$ of molecule (III) are in the all-trans configuration with the following average bond lengths and angles in the butylamine segment: C-C 1.51 (2), C-N 1.48 (2) \AA, $\angle \mathrm{C}-\mathrm{C}-\mathrm{C} 112$ (2), $\angle \mathrm{N}-\mathrm{C}-\mathrm{C} 113$ (2) ${ }^{\circ}$. These values are within 3σ of values tabulated earlier (Chandrasekhar \& Pattabhi, 1980; Chandrasekhar, Pattabhi \& Raghunathan, 1982). The torsion angles around $\mathrm{C}(23)-\mathrm{N}(24)$ of molecule (I), $\mathrm{C}(35)-\mathrm{N}(36)$ of molecule (II), $\mathrm{C}(47)-\mathrm{N}(48)$ of molecule (III) are $93,-85$ and 80°, respectively. The guan-

Table 1. Fractional positional parameters and $B_{\text {eq }}$ temperature factors (\AA^{2}) for non-hydrogen atoms
$B_{\text {eq }}$ is the mean of the principal axes of the thermal ellipsoid.

	x	y	z	$B_{\text {eq }}$
S(1)	$0 \cdot 6216$ (6)	0.41634 (14)	0.2066 (3)	2.80 (3)
S(2)	0.4539 (6)	$0 \cdot 58222$ (15)	0.2954 (3)	2.462 (18)
S(3)	0.3783 (7)	$0 \cdot 25145$ (14)	0.8038 (3)	2.52 (4)
$\mathrm{O}(4)$	0.6178 (16)	,0.3746 (3)	$0 \cdot 1958$ (8)	$4 \cdot 3$ (7)
O(5)	0.6889 (16)	0.4260 (4)	0.3040 (8)	4.8 (7)
O (6)	0.7605 (15)	0.4332 (3)	0.1569 (7)	$3 \cdot 7$ (6)
O (7)	0.4262 (15)	0.4312 (3)	0.1685 (8)	4.5 (7)
$\mathrm{O}(8)$	0.4627 (15)	0.5403 (4)	0.3123 (8)	4.6 (8)
O (9)	0.3275 (16)	0.6012 (3)	0.3470 (8)	4.1 (7)
$\mathrm{O}(10)$	0.6459 (15)	0.5971 (3)	0.3230 (8)	4.0 (6)
O(11)	0.3762 (15)	0.5893 (4)	0.1988 (7)	4.4 (7)
$\mathrm{O}(12)$	0.3854 (15)	$0 \cdot 2930$ (3)	0.8164 (9)	4.5 (8)
$\mathrm{O}(13)$	0.2053 (15)	$0 \cdot 2360$ (3)	0.8315 (8)	4.5 (7)
O (14)	0.5482 (14)	0.2335 (3)	0.8564 (8)	3.8 (6)
$\mathrm{O}(15)$	0.3620 (15)	0.2441 (4)	0.7083 (6)	3.8 (7)
N (16)	0.3061 (19)	0.5589 (4)	1.0279 (10)	$3 \cdot 5$ (8)
$\mathrm{N}(17)$	$0 \cdot 3282$ (19)	0.5068 (4)	1.1201 (9)	$3 \cdot 4$ (8)
C(18)	0.2926 (24)	0.5197 (6)	1.0380 (13)	$3 \cdot 2$ (11)
N (19)	0.2465 (19)	0.4983 (4)	0.9681 (9)	3.1 (8)
C(20)	0.2194 (24)	0.4565 (6)	0.9786 (12)	3.43 (11)
C(21)	0.1582 (25)	0.4384 (6)	0.8887 (13)	4.02 (10)
C(22)	0.131 (3)	0.3962 (6)	0.9044 (11)	$3 \cdot 56$ (7)
C(23)	0.0715 (24)	0.3738 (7)	0.8204 (12)	4.70 (17)
N (24)	0.0509 (19)	0.3320 (4)	0.8369 (10)	3.1 (8)
C(25)	-0.1101 (24)	0.3140 (6)	0.8445 (12)	4.0 (11)
$\mathrm{N}(26)$	-0.2728 (18)	0.3348 (4)	0.8393 (10)	3.6 (9)
N (27)	-0.1068 (20)	0.2760 (4)	0.8552 (10)	3.6 (8)
N (28)	0.2879 (19)	0.3249 (4)	0.6271 (10)	3.6 (8)
N (29)	0.1978 (19)	$0 \cdot 2708$ (4)	0.5404 (10)	3.6 (8)
C(30)	0.2191 (22)	$0 \cdot 3092$ (6)	0.5449 (10)	2.7 (9)
N(31)	0.1729 (18)	0.3320 (4)	0.4766 (9)	2.9 (7)
C(32)	0.1882 (23)	0.3744 (5)	0.4857 (11)	$3 \cdot 12$ (8)
C(33)	0.1571 (22)	0.3935 (5)	0.3971 (13)	3.43 (14)
C(34)	0.158 (3)	0.4350 (5)	0.4083 (14)	$4 \cdot 16$ (17)
C(35)	0.1439 (23)	0.4580 (5)	0.3232 (11)	3.17(17)
N(36)	0.1324 (19)	0.4994 (4)	0.3363 (10)	$3 \cdot 3$ (8)
C(37)	-0.029 (3)	0.5186 (5)	0.3378 (12)	3.2 (10)
N(38)	-0.0087 (20)	0.5574 (4)	0.3514 (9)	3.7 (8)
N (39)	-0.1950 (18)	0.5015 (4)	0.3330 (9)	3.8 (8)
$\mathrm{N}(40)$	0.1770 (18)	$0 \cdot 1601$ (4)	-0.1203 (9)	$3 \cdot 1$ (7)
N(41)	0.1678 (18)	$0 \cdot 1062$ (4)	-0.0339 (9)	3.0 (7)
C(42)	$0 \cdot 1867$ (24)	$0 \cdot 1449$ (5)	-0.0407 (13)	$3 \cdot 2$ (10)
$\mathrm{N}(43)$	0.2035 (20)	$0 \cdot 1654$ (4)	0.0313 (10)	$3 \cdot 2$ (8)
C(44)	0.2030 (22)	0.2064 (6)	0.0249 (10)	3.56 (6)
C(45)	0.2525 (23)	$0 \cdot 2266$ (5)	0.1117 (12)	3.08 (14)
C(46)	$0 \cdot 2389$ (25)	0.2691 (6)	0.1007 (12)	3.96 (18)
C(47)	0.2980 (24)	0.2935 (6)	0.1860 (12)	3.99 (14)
$\mathrm{N}(48)$	0.2648 (20)	0.3341 (4)	0.1715 (10)	3.4 (8)
C(49)	0.1013 (24)	0.3542 (7)	0.1649 (12)	4.0 (13)
$\mathrm{N}(50)$	0.0990 (22)	0.3909 (4)	0.1548 (11)	$4 \cdot 3$ (9)
N(51)	-0.0521 (18)	0.3333 (4)	0.1704 (10)	4.0 (9)

idyl groups are triangular planar ($\chi^{2}<1.02$) and the mean $\mathrm{C}-\mathrm{N}, \mathrm{C}=\mathrm{N}$ lengths are 1.37 (2), 1.31 (2) \AA and the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle is $120(2)^{\circ}$.

The molecule exhibits a layered packing with the zigzag amine chains arranged in planes parallel to $b c$. The three butylamine segments are approximately in parallel planes, the angles between these planes being 168 (2), 12 (2), 167 (2) ${ }^{\circ}$. The sulphate ions interleave these planes as observed in other amine sulphate and phosphate structures (Chandrasekhar et al., 1982; Huse \& Itaka, 1969).

There are eight protons from the amines and two from the SO_{4}^{2-} groups for hydrogen bonding per

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses
The atom numbering for molecule (II) is the same as for molecule (I), plus 1 for $\mathrm{S}, 4$ for O and 12 for C and N . Molecule (III) is similarly related to molecule (II).

	Molecule (I)	Molecule (II)	Molecule (III)
$\mathrm{S}(1)-\mathrm{O}(4)$	1.48 (1)	1.49 (1)	1.47 (1)
$\mathrm{S}(1)-\mathrm{O}(5)$	1.52 (1)	1.49 (1)	1.51 (1)
$\mathrm{S}(1)-\mathrm{O}(6)$	1.51 (1)	1.47 (1)	1.47 (1)
$\mathrm{S}(1)-\mathrm{O}(7)$	1.51 (1)	1.50 (1)	1.48 (1)
$\mathrm{C}(18)-\mathrm{N}(16)$	1.39 (3)	$1 \cdot 38$ (2)	1.33 (2)
$\mathrm{C}(18)-\mathrm{N}(17)$	$1 \cdot 32$ (2)	$1 \cdot 36$ (2)	1.37 (2)
$\mathrm{C}(18)-\mathrm{N}(19)$	1.30 (2)	1.31 (2)	1.31 (2)
$\mathrm{N}(19)-\mathrm{C}(20)$	1.49 (2)	1.50 (2)	1.44 (2)
C(20)-C(21)	1.51 (3)	1.50 (2)	1.49 (2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.52 (3)	1.47 (3)	1.50 (3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.50 (2)	1.53 (3)	1.56 (3)
$\mathrm{C}(23)-\mathrm{N}(24)$	1.50 (3)	1.47 (2)	1.45 (2)
$N(24)-\mathrm{C}(25)$	1.36 (2)	1.36 (2)	1.37 (2)
$\mathrm{C}(25)-\mathrm{N}(26)$	1.38 (2)	1.38 (2)	$1 \cdot 30$ (3)
$\mathrm{C}(25)-\mathrm{N}(27)$	1.34 (2)	1.33 (2)	1.35 (2)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}(5)$	109.1 (7)	111.0 (7)	109.2 (7)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(6)$	107.5 (7)	109.6 (7)	110.0 (7)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(7)$	109.7 (7)	111.8 (7)	111.4 (7)
$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(5)$	113.2 (7)	107.9 (7)	108.4 (7)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(4)$	$109 \cdot 5$ (7)	107.2 (7)	110.3 (7)
$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(4)$	107.8 (7)	109.3 (7)	107.4 (8)
$\mathrm{N}(16)-\mathrm{C}(18)-\mathrm{N}(17)$	116 (2)	117 (1)	119 (2)
$\mathrm{N}(16)-\mathrm{C}(18)-\mathrm{N}(19)$	119 (2)	119 (2)	118 (2)
$\mathrm{N}(17)-\mathrm{C}(18)-\mathrm{N}(19)$	124 (2)	124 (2)	123 (2)
$\mathrm{C}(18)-\mathrm{N}(19)-\mathrm{C}(20)$	120 (1)	122 (1)	119 (1)
$\mathrm{N}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	109 (1)	111 (1)	114 (1)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	107 (2)	110 (2)	112 (2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	113 (2)	115 (2)	117 (1)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(24)$	113 (1)	113 (1)	114 (2)
$\mathrm{C}(23)-\mathrm{N}(24)-\mathrm{C}(25)$	126 (1)	124 (1)	129 (2)
$\mathrm{N}(24)-\mathrm{C}(25)-\mathrm{N}(26)$	119 (2)	123 (1)	121 (2)
$\mathrm{N}(24)-\mathrm{C}(25)-\mathrm{N}(27)$	119 (2)	115 (2)	115 (2)
$N(26)-C(25)-N(27)$	122 (1)	121 (1)	124 (2)

Fig. 1. Stereoview of the molecule and atom numbering.
molecule, out of which eight of molecule (I) and nine of molecules (II) and (III) are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$-type bonding.

The configurational similarities between sulphate and phosphate ions make it possible to extrapolate the observations made in the present study to the possible mode of binding of arcaine molecules to nucleic acids. The inter-sulphate distance of $7.26 \AA$ along the a axis can be compared with that of $7.3 \AA$ between successive phosphate groups along the helix in polynucleotides. As in the previous studies we observe that the amine molecule has the correct geometry to bridge in DNA helices through hydrogen bonds with the phosphate ions of the nucleic acids, stabilizing their structures.

VGT and VP thank UGC (India) and NRC (Canada) for financial support.

References

Chandrasekhar, K. \& Pattabhi, V. (1980). Acta Cryst. B36, 2486-2488.

Chandrasekhar, K., Pattabhl, V. \& Raghunathan, S. (1982). Acta Cryst. B38, 2538-2540.
Grant, D. F. \& Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.
Huse, Y. \& Ittaka, Y. (1969). Acta Cryst. B25, 498-509.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Larson, A. C. \& Gabe, E. J. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, p. 81. Delft Univ. Press.
le Page, Y., Gabe, E. J. \& Calvert, L. D. (1979). J. Appl. Cryst. 12, 25-26.
liquori, A. M., Constantino, L., Crescenzi, V., Elia, V., Griglio, E., Pulti, R., De Santis, P., Savino, M. \& Vitagliano, V. (1967). J. Mol. Biol. 24, 113-122.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pattabhi, V. \& Chandrasekhar, K. (1983). Conformation in Biology, edited by R. Srinivasan \& R. H. Sarma, pp. 291-298. New York: Adenine Press.
Tsuboi, M. (1964). Bull. Chem. Soc. Jpn, 37, 1514-1523.
Woo, N. H., Seeman, N. C. \& Rich, A. (1979). Biopolymers, 18, 539-552.

Structures of Two 2-Arylpyrazolo[4,3-c]quinolin-3-ones: CGS8216, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, and CGS9896, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}^{*}$

By V. Ferretti, V. Bertolasi and G. Gilli
Centro di Strutturistica Diffrattometrica, Università di Ferrara, 44100 Ferrara, Italy

and P. A. Borea
Istituto di Farmacologia, Università di Ferrara, 44100 Ferrara, Italy

(Received 13 July 1984; accepted 17 September 1984)

Abstract

CGS8216, 2-phenyl-2,5-dihydropyrazolo-[4,3-c]quinolin-3(3H)-one, $\quad M_{r}=261 \cdot 28, \quad P 2_{1} / c, \quad a=$ 8.147 (2),$\quad b=12.855$ (2),$\quad c=12.521$ (3) $\AA, \quad \beta=$ $103.62(2)^{\circ}, \quad V=1274.4(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.36 \mathrm{Mg} \mathrm{m}^{-3}$, Мо Ka, $\lambda=0.71069 \AA, \mu=0.08 \mathrm{~mm}^{-1}$, $F(000)=544, T=298 \mathrm{~K}, R=0.037$ for 1147 unique observed reflections. CGS 9896 , 2-(4-chlorophenyl)-2,5-dihydropyrazolo[4,3-c]quinolin-3(3H)-one, $\quad M_{r}=$ 295.73, $P b c a, a=14.790$ (3), $b=9.515$ (1), $c=$ 18.326 (3) $\AA, \quad V=2578.9$ (7) $\AA^{3}, \quad Z=8, \quad D_{x}=$ $1.52 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=0.71069 \AA, \mu=0.29 \mathrm{~mm}^{-1}$, $F(000)=1216, T=298 \mathrm{~K}, R=0.046$ for 1117 unique observed reflections. The crystal packing of the two compounds is discussed. It is shown that intermolecular hydrogen bonding can cause small but significant

[^0]changes in the geometry of the $-\mathrm{HN}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ fragment. The role played by these compounds as benzodiazepine-receptor ligands in the central nervous system is briefly reviewed.

Introduction. The central nervous system contains stereospecific saturable high-affinity recognition sites for benzodiazepines (BDZ's), which are thought to mediate their pharmacological effects (Squires \& Braestrup, 1977; Möhler \& Okada, 1977). There is evidence that BDZ's exert their action mainly via the GABA system (GABA $=\gamma$-aminobutyric acid) (Braestrup, Nielsen, Honoré, Jensen \& Petersen, 1983), the molecular basis of this interaction being probably the GABA-BDZ-receptor-chloride channel complex. BDZ's are widely employed in therapeutics as anxiolytic and anticonvulsant agents. More recently, several new drugs have been discovered interacting with BDZ
© 1985 International Union of Crystallography

[^0]: * Stereochemistry of Benzodiazepine-Receptor Ligands. II. Part I: Bertolasi, Ferretti, Gilli \& Borea (1984).

